
SepLog - Separating the Database Log To a Remote
Machine

Roee Ebenstein
The Ohio State University

2015 Neil Ave.
Columbus, Ohio

ebenstei@cse.osu.edu

ABSTRACT
Current database systems performance is dependent on the
database logging mechanism. The database log mechanism,
which tracks every change to the database content, is the
heart of the crash recovery. Each data change has to be
logged before a database user who issued a data manipu-
lation command gets a confirmation the command finished
execution. This creates a synchronization bottleneck that
affects performance tremendously.

In this paper We introduce SepLog, a logging service in
which the log itself is hosted in-memory on a remote server,
separating the DBMS logging component from the DBMS
engine. We describe SepLog in details, and show it im-
proves DBMS log performance, which leads to higher trans-
actional throughput and lower transactional latency com-
pared to storage based systems, while maintaining the same
durability properties.

1. INTRODUCTION
One of the major bottlenecks in database systems is the

logging component, particularly the redo-log files filling pro-
cess. This bottleneck exists by design to enable one of the
most basic database features - durability. The bottleneck is
rooted in three different contentions: a flush to disk, sequen-
tial writing to the log (usually being enforced by a mutex),
and the checkpoint mechanism.

The checkpointing mechanism is in place for enabling crash
recovery. A checkpoint will be executed before the redo-log
content is going to be written over - and lost - assuring the
pre-write-over content will not be lost (i.e. each and ev-
ery committed datum will be recoverable either from the
redo-log or from the data files). The checkpoint enforces
the physical data files on storage to synchronize with the
in-memory caches and the redo-logs in a manner that as-
sures the system is recoverable, and in the case of a crash
data would not be lost. If needed, the checkpoint will stall
the system while the cache buffers are being flushed to the
non-volatile storage (disk).

The sequential write to the redo log is in place for pro-
tecting data structures as well as ordering the commands
for the recovery process. In some cases, the logging I/O
is asynchronous, which results in parallel execution of disk
reads and writes. Further, the access to key objects has to
be ordered occurred, assuring that no concurrent access to
these objects occurs and that the flush flushes all previous
pending log data, including the log data of other sessions.
The disk flush assures that the content, which would have
been required in the case of crash recovery, will be available
and accessible after a crash happens.

In this paper we suggest tackling the bottleneck the tra-
ditional log system architecture causes by:

1. Storing the redo-log content in-memory on a remote
machine instead of on disk files. We utilize this approach
since network performance properties and the probability
of a computer crashes favor distributed in-memory systems
which communicate over the network. We claim that the
suggested architecture is at least as likely to keep the log
content safe and reachable as traditional system architec-
tures do, while improving performance drastically.

2. Changing the log system contention to be only on the
data structures that represent the log within the system and
not to use redo-log buffers, which flush the redo-log to disk,
at all. This decreases the overall lock time within the logging
system enabling better performance.

We claim neither the logging component should be re-
written end-to-end, nor that the database architecture should
change. Our work shows the contrary. Current database
architectures are robust. Similarly to the conclusions pre-
sented in [4], we conclude that because local changes sufficed
for our development, no change is necessary to database ar-
chitectures.

In our work, we increase the throughput while decreas-
ing the latency of the database log component by extracting
the database logging storage component from the database
engine and hosting it within memory of a remote server.
This concept transfers the storage load the log component
imposes to the networking device, which makes it the bot-
tleneck for the logging component. We believe that, in the
case of logging, it is easier to scale, out and up, network-
ing than storage since the I/O requests are relatively small
and being written sequentially. The reasoning behind these
claims is rooted in the observation that each networking
device has higher throughput and lower latency than each
storage device, including SSDs (please refer to [9] for stor-
age properties, and to [16] for the motivational discussion
on switching to remote memory usage, with its properties).

1



Our implementation is based on an extension of MySQL,
which uses MPI for intra-node communication on the Ohio
Supercomputing Center (OSC) Oakley cluster. In this envi-
ronment, we have used the local storage system and the de-
fault infiniband networking configuration. For details about
the environment hardware, please refer to [19]. The MPI
implementation we used is described in [20].

The structure of this paper is as follows: In section 3,
we describe how database logging works in current systems
(focusing on the cyclic logging approach). In 4, we describe
in memory log storage and its implications. In 5, we describe
our implementation in more detail and in 6 we evaluate it.
In 7, we discuss future work. In the following section, section
2, we discuss related work. We conclude in section 8.

2. RELATED WORK
In [15] the authors conclude that database logs are a sig-

nificant bottleneck in a DBMS system. In [13], the authors
identify four logging related impediments, including I/O re-
lated delays. In [12], the authors claim this problem is be-
coming less important with time, due to the development
of SSDs. In [15] and [14], the idea of using SSDs instead
of magnetic disks for database logging is being thoroughly
developed. Experiments show that the performance of SSDs
for logging is much better than of a magnetic disk. In
[17], the authors claim that the endurance of these devices
is much better than those reported by the manufacturers.
The question of “Are SSDs a good fit for the database log-
ging component, due to the DB log characteristics” remains
unanswered in literature. It should be further researched;
the shorter and limited endurance of these devices with the
extensive writing of small chunks suggests to us that SSDs
are not a good fit for DB logging. In addition, SSDs are also
very expensive for enterprise use. It is so expensive that, in
[6], the authors suggest to retain the database log files on
thumb, USB flash, drives RAID to avoid expenses.

All these studies are rooted in the stalls which occur while
waiting for a non-volatile memory confirmation of write be-
fore a transaction can end. These stalls are being imposed
on a DBMS system by the current logging mechanism ar-
chitecture. For durability, it is necessary to pay the cost of
system stalls for the log data.

Following the ideas presented in [16], we suggest using the
RAM of a remote machine for holding the log data instead
of on disk. This idea innovatively allows the transaction
manager to return a commit ACK after the transactions
have been sent over the network to another machine, instead
of waiting for the storage ACK.

Network latency is lower and throughput is higher than
respective storage based values per device (SATA 3 is lim-
ited to 6Gb/s, SATA 3.2 gets to 16 Gb/s compared to net-
working speeds that can get as high as 160Gb/s). In [10]
and [16], there is a thorough review of storage and network
properties and limitations. In many other components, the
requirement of the system is to use non-volatile storage; we
claim that for the log system we can suffice in remote ma-
chine volatile memory instead.

Following the data presented in [22], if current hardware
fails, it is more likely that the failure is storage-related than
RAM-related. The information in this paper refers to mag-
netic disks, not SSDs. We expect SSD endurance to be lower
than the hardware examined in this paper. Therefore, the
likelihood of a storage failure using SSDs should increase

even more. It is clear that removing a component from the
system, such as a hard drive, will increase the reliability of
the whole system ,since there are less components that can
fail.

Our implementation, SepLog, stores data in-memory while
the database is running. It is important that, when turning
the system off, we use non-volatile memory (disks) for stor-
ing the log content into traditional files. These files are then
read when the system is being turned on again.

With SepLog, one can still use SSDs for the non-volatile
memory if needed for archival or regular storage of data files
while implementing the techniques shown in [13],[5],[12]. Se-
pLog can also complement the concepts like those presented
in [2](Tango) and [3](Hyder), which are based on the ideas
presented in [1](CORFU).

A lot of work has been done in the distributed in-memory
databases domain. Our work is targeted towards the tradi-
tional storage based DBMS. In the distributed in-memory
database domain, new commit approaches have been in-
troduced in addition to different methods of locking and
relaxation of transaction visibility approaches. Traditional
systems perform local locks and have simpler commit and
synchronization protocols, which, in our architecture, the
system preserves. Our system is not a remote key-value sys-
tem. Although we could have used some of the approaches
introduced in other work, its performance would have been
limited. In our work, we can assume rare reading, sequen-
tial writing, and no write conflicts, which in other works the
researchers could have not.

Our work maintains all the advantages a centralized DBMS
has, while offering a performance boost that almost reaches
the performance available today only on in-memory DBMS.
It is important to emphasize that SepLog will not perform
better than in-memory DBMS. However, it will allow a storage-
based system to almost reach the performance level offered
by in-memory DBMS, while maintaining all the storage-
based systems properties that do not exist in in-memory
systems.

3. LOGGING
In this section, we review how the cyclic redo-log mecha-

nism works. There are other database log mechanisms that
we do not cover here. In our current implementation, we do
not support dynamically growing log sizes, which does not
allow us to implement these log mechanisms using SepLog.
Our conclusions still apply to these logging methods. We
chose to focus on the cyclic redo-log since this mechanism
includes most of the complexities that exist in the other log
mechanisms. It allows us to focus on a limited number of
commands, which will be presented in the following section.
This is in addition to the large popularity of cyclic logging,
which makes it attractive as a show case.

Cyclic redo-log is a logging mechanism based on a pre-
allocated memory area, which is being managed in a way
that allows full recovery from every crash, assuming log
content is reachable. This is done by having at least two
redo-log files, which can be in one of three different states:
current (which we will refer to as the “ACTIVE” log file),
Currently not being used (which will be referred to as “IN-
ACTIVE”), and “IN-USE” (which will not be discussed in
detail here).

There are two terms that are critical for understanding
the cyclic log model: 1. Log flush, and 2. Checkpoint.

2



The log flush (in this paper, wherever we write “flush”
without mentioning the content of the flush, we refer to log
flush) is an action that assures that the content written to
the log so far will be accessible after a system crash (in tra-
ditional systems it is accomplished by using disk). In most
systems, we accelerate the disk write by making it either
asynchronous or by buffering the writes. For logging, we
cannot do so for some commands because when the “write
to log” command returns control to the requester, the data
of the requester has to be recoverable, i.e. accessible in case
a crash occurs. The recovery process can be completed only
if all committed data was sent successfully to the log file
and is accessible for the recovery process after a crash has
occurred.

The checkpoint is a mechanism that assures all the data
cached in memory that have not yet been written to disk
finds the way to its designated place on the non-volatile
memory.

One can think of the DBMS system as one composed of
two different types of files for data: the data content and
the log content. The data that was committed has to be in
at least one of the file types, and for each file type there is a
different flush mechanism. Both processes, checkpoint and
flush, cannot occur simultaneously because of the inherent
dependency between these processes.

The cyclic log, as the name suggests, works in a cyclic
pattern. Each of the log files can be in one of three states -
“ACTIVE”, “INACTIVE”, and “IN-USE”. When a log be-
comes “ACTIVE”, the system will write new log records to
it. When a new log record arrives, it is tunneled to the cur-
rent “ACTIVE” redo-log. The “INACTIVE” state means
the log file is currently not being used at all. The “IN-USE”
state means an operation currently accesses the redo-log, but
it is not being appended (this state will not be explained fur-
ther in this paper.) It is important to notice that there is,
at most, one active redo-log file at every moment.

As mentioned before, there are at least two log files in
the cyclic log mechanism. These log files are ordered in the
system, and usually are used in the predetermined order.
The system always writes log records to the current “AC-
TIVE” log file sequentially in the order it arrives. When
the current log file is full, the system changes the status of
the current file to “IN-USE” or to “INACTIVE” (if the file
status becomes “IN-USE”, it is marked “INACTIVE” af-
ter the action that marked it as such finishes). Before the
next log file becomes active, the system verifies that it is
currently “INACTIVE” and is not about to write over data
that, in case of a database crash, would be needed for recov-
ery. If such datum exists, the system performs a checkpoint
while the log freezes the whole system. After the check-
point completes, if it was required at all, the next log file
becomes “ACTIVE” and the system allows new log requests
to be submitted to it. The system knows which records are
required for crash recovery by the database timing scheme
(LSN in MySQL). For more information about the recovery
process, please refer to [11].

Some DBMS‘s optimize this process by having small check-
points between full log cycles. Thanks to it each checkpoint
will not have to flush all the new data but only a small sec-
tion of it. It increases the probability that by the time a
switch (of logs) occurs a full checkpoint is not necessary.

Among the requests that the database gets, there is one
special command - COMMIT. The COMMIT command is

special log-wise because this is the only client command that
forces log flush. It is not important if the command is being
given explicitly (by committing a transaction) or implicitly
(by a DDL, for example). In both cases, a log flush will
be executed. A ROLLBACK does not have to trigger a
flush in case of recovery - if a COMMIT is not found in the
log, a ROLLBACK is assumed. However, the ROLLBACK
command is sent to the log, like each and every other client
command, given the ROLLBACK command in the log, the
buffers of the recovery process remain small and the process
becomes more efficient.

We want to emphasize two important observations: 1. A
COMMIT forces log flush. This means that when a COM-
MIT is being sent from a client, the client will be stalled until
the database can assure it can recover the committed data
in the event of a crash. 2. A checkpoint (that runs at least
once in a full log switch cycle, i.e. before over-writing data
in the log) might stall the whole system. When a log switch
occurs, the content of the ‘about to become’ active file is
about to be over-written. Until all the counterpart’s cached
data blocks are on disk, its final destination, the log will not
write requests (and will freeze all log input channels). The
freeze will be released only after the checkpoint completes
and the relevant content is on non-volatile memory.

Figure 1: A cyclic log system

In figure 1, there are eight log records that have been
submitted to the system and each log has room for three
records. In a real system, the records are not fixed in size,
but, in the figure, they are for demonstration. When the sys-
tem started, the left redo-log was the active one. After the
third record had been submitted, the active redo-log became
the second one and the first one became inactive (since the
system was just started before, no checkpoint is necessary).
After the sixth record, the second redo-log became inactive.
Because the seventh record was supposed to overwrite the
content in the first log file, a checkpoint was triggered be-
fore the first log became active again (an action that results
in a data loss from the log file). After the checkpoint com-
pleted, the first file became active again and digested the
rest of the log records. In the diagram, the records before
the checkpoint are colored in red, and those after in green.

One can deduce that choosing the log file size, the number
of files, and making sure all the log files are the same size
are critical for the database performance. If the log file is
too small, checkpoints will occur often, which will freeze
the system and will harm the system performance. Having

3



different file sizes will result in one log that fills faster than
others. It might harm the system in many ways that are
out of the scope of this paper, such as building heuristics
for checkpoint predictions. The number of log files affects
the time between forced checkpoints. The wrong number of
files will harm some mechanisms that are out of the scope
of this paper, such as archival. In addition to these, other
mechanisms exist in database systems that can be affected
by the log size and the number of log files. One thing to
remember - the total size of the log files is the size that will
be read for recovery, so there is a direct relation between the
log size and the recovery duration.

3.1 Recovery
The recovery process is the only DBMS process that reads

the log (there are other user initiated processes that can
read the log, but these are not critical for the DBMS). On
startup, the DBMS scans the log and finds the log starting
and ending points (the earliest and latest log records and
their positions; this is done by using the timing sequencing
mechanism mentioned earlier) for recovery.

From the content that is read from the log, the system
knows what values (and where they are supposed to be on
disk) are supposed to change for each transaction. Using
that information, the system “rolls” the commands that are
in the log for each transaction, one by one, mimicking each
transaction as if it is currently running. This process recov-
ers the state of each transaction from the last checkpoint
until the crash.

Each transaction that was not committed when the last
log record was applied will be rolled back.

In this section, we summarized the recovery process from
a very high level. For more details, please refer to the related
work and the crash recovery section in [11].

4. LOG SEPARATION
There are multiple options for log separation from the

DB engine. In this section, we will discuss these options
and motivate the decisions we took in our implementation.

4.1 Architectural options
The redo-log component in the DBMS is part of the dura-

bility assurance mechanism. There is one transactional com-
mand that directly influences the durability of the system -
COMMIT. Since the system has to be durable only for com-
mitted transactions, DBMSs leverages the no need to flush
log data to disk on any other command. The most basic
optimization that almost all the DBMSs implement is the
redo-log buffer, which holds the redo-log data in memory
until a flush command forces it to be written to disk.

As mentioned before, the log records are small compared
to the I/O blocks in most cases and the content is being writ-
ten sequentially, which makes the optimization above very
beneficial compared to the alternative. It allows buffering
commands between different COMMITs and flushing them
together to increase the system throughput because the I/O
devices behaves better with larger and sequential writes.
Storage devices also have better latency with blocks that
are given in a sequential order. Therefore, this optimization
helps fulfilling multiple goals. The redo-log buffer is flushed
directly to the files on disk.

The logging component triggers the checkpoint mecha-
nism when needed. In most DBMSs, there is an additional

mechanism that triggers the checkpoint mechanism before
the system is forced to do so by overwriting existing log
data. This optimization allows the checkpoint mechanism
to avoid freezing the whole DBMS system while a check-
point is being flushed. It is done by pushing forward the
“overwrite point” which forces the checkpoint. If, for exam-
ple, we have two redo-log files, this optimization flushes the
data content of transactions that were written to the first
redo-log file while the second one is being filled, voiding the
need to flush this content when the log-switch occurs. This
optimization would work only if the redo-log files are big
enough for a data flush to finish before a full redo-log cycle
completed.

With these two optimizations in mind, there are three
areas in which we can intervene in current architectures to
extract the logging component from the DBMS engine: 1.
The session management level. 2. The buffer level. 3. The
disk level.

Modifying the DBMS from the session management level
means modifying the code that interacts with the client di-
rectly. Within this code, a database user-issued command
is divided to two logical parts: logging and data manipu-
lation. In the data manipulation code, the server process,
which serves as the user proxy on the DBMS server ma-
chine, modifies the data within the target tables. These
modifications are kept in memory and are assured to reach
the storage only at checkpoint. The logging part at that
level simply sends the command to the log component that
requests the data to be logged. The control returns to the
session management after the log content is in the log buffers
(or on disk if it is a COMMIT command that was issued).
Modifying the DBMS from this level would require modify-
ing the high-level code that communicates with the client to
handle low-level log writing issues (while in many DBMSs,
the lower level data writing determines what needs to be
logged). This is a poor design approach because a high-
level method, which is in charge of session management, is
required to implement the actual log writing. We decided
not to implement SepLog at that level.

Modifying the DBMS from the buffer level means being on
the other end of the server process mentioned above (within
the logging component). The advantage of this level is that
the component receives only log requests, and does not need
to know which request is a log one and which is not.

Modifying the DBMS from the disk level means tapping
into the classes or procedures that write to and read from
disk files. The calls to these libraries do not differ between
any type of DBMS data access: logging, data, or config-
urations. It is not relevant to know if it is a log record
or data when writing a byte sequence to a file. Therefore,
some databases merge the code base for all file accesses. We
implemented SepLog over MySQL, which uses the same file
modules for log writing and data writing within the InnoDB
storage module.

Our implementation approach is to modify the DBMS
from the log buffering level, while complementing it with
isolated modifications of the disk level wherever necessary
for system correctness. The reason we could not completely
extract the log from the buffering level is that, within some
existing systems, and MySQL is one of these, there are some
storage access optimizations that cause log related com-
mands to be strongly tied to the storage layer. For exam-
ple, within MySQL, there is a protocol with which both the

4



buffering layer and the storage layer comply to ensure the
disk flush is completed. Our code intervention had to com-
ply with this protocol for the system to function correctly.
Of course, each DBMS would have different optimizations,
but it is important to remember these “back channels” exist.
We believe that, with our implementations, the log writing
can be completely separated from the storage one, providing
better implementation options.

After the data that is meant to be sent to the files is sep-
arated from the DBMS engine, we send it to the remote
machine to store it. In our implementation, we have not
optimized this process, and this was an intentional baseline
building decision. Each command that the server process
sends to the log component has left the MySQL server pro-
cess by the time the server process gains control back from
our MySQL extension module (see the next section for more
information). This means, for example, we do not buffer
commands, a process that would increase the performance
in our architecture as well as it does for disk communica-
tion in current DBMSs, due to networking properties. In
the evaluation section, we show that although we have not
optimized the system and voided the storage optimizations
that were already implemented by the DBMS engine, the
performance is still better.

There are two architectural options for sending the log
data to the server: 1. Using direct writing to the target
server(s) from the DBMS engine. 2. Using a proxy service
between the DBMS and the log server.

In the first approach, the MySQL is ”Logging Server Aware”;
it has to know who the server is and how to implement its
communication protocol in full. The second approach uses
a proxy process that mediates between the two using IPC
channels for communication between the two processes.

The first approach has better performance because the
log data has less “hops” on the way to the target server. In
this approach a COMMIT protocol is just a “send confir-
mation” protocol, which is a lightweight protocol compared
to the other options that require a round-trip between the
server and the client. Although it has better performance, it
motivates high coupling and low cohesion between the two
servers. The second approach has full separation and moti-
vates the coding of the logging component as a library that
can be used by more than one system simultaneously.

We chose to implement the proxy approach. We are fully
aware that we harmed the performance with this architec-
tural decision. By making this decision, we gained a few
properties: 1. We did not have to link more libraries to
the MySQL core engine; it is good because, debugging-wise,
we could focus on the proxy/server code without having the
DBMS engine on. Because we have not added significant
complexity to the MySQL end, the probability of modify-
ing the MySQL engine behavior decreased drastically and,
evidentally, the number of bugs we had on that end was
low. 2. The log component is autonomous and, in case
MySQL starts while the proxy and server processes have
not been initialized yet there will be an engine stall that
will be released when the SepLog proxy and server will be
initialized, and pull the queued requests, instead of a DBMS
engine crash. 3. We show that, although this process is not
efficient, and we did not implement any performance opti-
mization (each message has to travel through IPC queue,
and afterwards through a network communication channel),
the performance is still better than that of a disk based log

implementation. It leads to the conclusion that creating a
more focused and efficient separated logging system would
produce much better results than those shown here.

In our current implementation, we hold one copy of the
log content on one remote SepLog server. It is clear that,
while using volatile memory, we have to keep at least two
copies of the data because, in case this node crashes, we
have to be able to recover the data that was held in its
RAM. An inevitable question is: Where should the second
log copy be held? We can hold the second copy of the log on
the DBMS node or on an additional remote server, making
SepLog a distributed log system. We expect the overhead
of both architecture to be low performance-wise due to the
network properties, although we will confirm it for both in
future work. In this work the second copy is held on the
DBMS machine.

4.2 System durability
One should ask why is it safe to use volatile RAM of a

remote machine. The reasons why non-volatile memory was
used in the first place are so that the content is available
after a DBMS crash and the hardware has not supported
large ammounts of RAM. it seems like volatile memory is
less reliable to maintain the data than non-volatile memory,
such as magnetic disks and SSDs.

A key observation to ease that concern is that, for a data
loss, all machines have to crash simultaneously (the DBMS
engine, and the SepLog node(s)). The likelihood of all nodes
crash simultaneously is much lower than the likelihood of
one machine crash as a result of an independence node crash
assumption, which can be ensured with the right data-center
design. When one of the related machines crashes, SepLog
should turn itself off orderly, or at least flush its content to
disk, which ensures the content will remain on non-volatile
memory and be accessible on the next system start-up, while
decreasing the time frame window that the system might be
sensitive to crashes in.

With this approach, the non-volatile disks of the SepLog
server are used only when the SepLog server turns off and on,
drastically decreasing the number of writes and reads to and
from the storage devices, which leads to better durability of
the storage devices. This will allow the SSD endurance in
the system to drastically increase.

Looking at the data collected in [22], we deduct that, on
current systems, it is more likely that a failure on current
hardware will be rooted in disk than in memory. Also, the
usage of disk in current systems comes in addition to the
memory usage. Therefore in our design we use less com-
ponents that can fail, which leads to increasing full system
stability. Another thing to notice is that, by the results re-
ported in this research, it is more likely RAM will return the
value that was written to it than disk in current systems,
which is a motivational boost for this work.

As discussed in the previous subsection, we do realize that,
due to the total size of the redo-logs, it might be preferable
not to host the second log content copy on the same ma-
chine as the DBMS server (in big DBMSs, there are usually
3 redo-log files, each is 50GB - a total of 150GB; reserving
such amount of RAM is better on a dedicated machine than
the DBMS system that should use its RAM for caches). Al-
though, in an average system that uses 50MB to 10GB for
each redo-log file, using the local DBMS RAM is feasible.
In this paper, we have not experimented using two differ-

5



ent SepLog servers. We expect, due to our implementation
architecture and the way network interfaces work, that the
performance would barely be affected by this approach (see
the next section for more details). For more information on
our future work, see section 7.

We noticed that holding a local cache on the DBMS server
mostly increases the memory requirements, but does not sig-
nificantly harm the total system performance. The reason
for that is the sequential memory write and the observation
that the number of “memcpy” commands (in our implemen-
tation) increases only by 1. The additional work for adding
a local cache code-wise is two hash lookups (where the hash
table sizes are relative to the number of log files, which is
2 or 3 in most systems) and one pointer addition. These
4 additional commands do not affect the total run time of
the log process in a noticeable way (<1ms was measured in
our prototype). In addition, the data is written and read
sequentially, utilizing the bus architecture as a consequence
of the design.

We conclude that using two in-memory log instances, one
on the DBMS node (hosted within the proxy server if such
exists), and one on the remote SepLog server, does not harm
performance and results in a system that is at least as reli-
able as a system that uses non-volatile memory for the log.
The latest log data is reachable to the DBMS after either of
nodes crash, and the price for maintaining more than one
log file is mainly paid at the system initialization and shut
down (latest log file content scan is required for a successful
system startup).

Another property that increases reliability is the program
size. Since the log component is hosted in an external pro-
cess to the DBMS, its source code is separated from the
DBMS code. Our implementation for the server is less than
1000 code lines (for the SepLog server and proxy altogether).
This means we can debug and code review this code easily.
Although this code is affected by the incoming IPC channel
that is hosted within an external code, we find the size of the
application a big enabler for formal proofs of its correctness.
In addition, since the code is easy to debug and test due to
its size, we can gain trust that it would survive DBMSs
crashes that are rooted at a DBMS bug. These sort of bugs
are not likely to occur in SepLog since the only two actions
that are data related within SepLog are“read” and “write”;
both are internally implemented using a simple “memcpy”
command. We do not expect data related sequences to af-
fect the correctness of the SepLog engine. This claim does
not hold for the DBMS system itself since it has to interpret
or decode the content given to it.

We believe that the size of SepLog, that is small be-
cause of the design decisions we made regarding the inter-
face and the way both processes communicate, is a stabil-
ity enabler, which will make the system survive any DBMS
non-hardware related crash. The system is also pruned to
hardware-related crashes since the two nodes should lay on
separated and non-hardware dependent. Note that these
claims are valid for both implementation options mentioned
- proxy based SepLog and direct remote memory write.

5. IMPLEMENTATION
SepLog implementation leverages the properties of the en-

vironment it is hosted in - Oakley at OSC (the Ohio Super-
computing Center); see [19].

We chose to implement SepLog with MySQL Community-
[18]. MySQL was attractive to us because the source code
of it is easy to browse and there is a lot of public knowledge
about modifying this engine. In addition, the innoBase stor-
age engine implements a cyclic log mechanism.

SepLog is made up of three components: 1. SepLog con-
nector, 2. SepLog agent/proxy, and 3. SepLog server.

The SepLog connector is a modification of the MySQL
I/O module, and log backup and recovery modules. These
modifications redirect the log requests to the SepLog proxy
process. In our current implementation, the redirection itself
is done by using the boost IPC library - [21]. Using IPC, we
separate the SepLog connector from the details of the actual
communication protocol between the two servers.

The SepLog server and the SepLog agent/proxy are func-
tioning together as the log component. The main difference
between both is that the agent/proxy, in addition to being
able to maintain the log locally, it is also sending the log
commands to the remote SepLog server. In future work, we
will diminish the “log maintaining” responsibility from the
proxy, making its sole responsibility to send the log requests
efficiently to all log servers - see section 7.

For communication, we are using MVAPICH2/2.0a - [20].
This MPI implementation leverages the OSC environment.

Figure 2: System Architecture

Our high level architecture is displayed in figure 2. It
is important to emphasize the synchronicity of each call.
MySQL creates a thread within its process for each client.
Each thread, named “server process” as mentioned before,
serves each client request. If it is a query, the server process
will read the data requested, process the query, and return
its results; if it is a DB modification request, the server pro-
cess will execute the command in full (it will modify the data
in caches, and will log the relevant parts). Since many server
processes exist, there are concurrent modifications of data
within the database. The logging component, though, does
not allow multiple requests. Within the logging component,
only one writer can exist. The physical I/O is done asyn-
chronously while there is only one thread that can initialize
a writing at a time. On COMMIT, the server process, which
locks the whole logging component while the operation has
not been finished, waits for all the asynchronous current I/O
operations to finish flushing the writes to the device. The
order that each server process gets into the log is used not
only for the logging, but also determines its content visi-
bility to other transactions and queries in the system (e.g.
isolation levels). The logging component is usually the only
forced database contention; while all other contentions are
dependent on user requests, through the server process, the
logging contention is forced by the system itself.

In our design, the SepLog connector sends requests to
the SepLog agent using an IPC queue (using the Boost li-

6



brary [21]). The process that listens to this queue dequeue
requests one by one, and sends those to the server using
a synchronous MPI channel. The server dequeues these
MPI requests one by one and executes those. SepLog does
not currently parallelize its actions, but works sequentially.
However, the log writing speed does not affect the DBMS
system. The only command that requires an engine feedback
is the “COMMIT” command, which will be the only DBMS
logging-imposed stall. It is important to emphasize that
only one COMMIT can be executed in parallel in current
systems and our architecture opens the doors to multiple
simultaneous commits. We will research this option in fu-
ture work since it requires modifying the database recovery
process and possibly the way content is being written to the
log.

There are many opportunities SepLog offers for paralleliz-
ing the log writing process. Please refer to our future work
section, section 7, for our future plans of parallelism for the
log component.

After a full logging component communication analysis,
we extracted six methods that have to be implemented for
the log to operate correctly. Following is the description of
each.

1. CREATE: The create call allocates a memory buffer
for the log content by the size requested while loading
the content from an existing, pre-saved file, if required,
by the being used system. In MySQL, the log file is cre-
ated by an external process, so in case the file we load
does not exist in the SepLog non-volatile storage direc-
tory, we send the content of the file from the MySQL
server. In case the “Create” started after a crash of a
node, the “Create” would recognize the most current
file and will load the right file to enable recovery using
the highest LSN, the system timestamp, within it.

2. CLOSE: This call does nothing. In SepLog, while
the system is “on” the DB engine cannot direct the
SepLog server to close files. That said, it is a marker
that the DB engine stopped using the file, and can be
used for future optimization; for example, it can save
the content to the non-volatile memory and release it
if more RAM is needed.

3. READ: This call queries the log for its content. The
call to read is similar to the call to fread; the requester
provides the buffer to read, how many bytes to read,
and the offset from the buffer beginning. This call, al-
though being sent asynchronously, provides feedback
to the client. Therefore, the SepLog server will send
a message back to the SepLog agent with the reply.
Reading from the log is rare, as long as there are
no special features enabled, such as archival service.
The reading from the log suggests a recovery process
is done.

4. WRITE: This call queues a write request. A feedback
from this call to the client is not necessary, therefore
a write can be parallelized easily.

5. FLUSH: This call ensures the data that was written
by now reached the SepLog server. Like the “Read”
command, a feedback to the requester is needed. It is
important to note that a “Flush” command requests
all the content that was written to the log to be on

non-volatile memory in the current semantic. We no-
ticed that this semantic is too restrictive. The system
correctness will not be harmed if each commit ensures
only its own content was flushed. In future work, we
will use this property and formally prove it.

6. SHUTDOWN: This call writes the in-memory con-
tent to non-volatile memory, releases the memory, and
turns off the system.

Notice these commands are generic and the SepLog archi-
tecture is not affecting the need for these. In both proxy
based and direct RDMA approaches, this is the protocol
that has to be implemented.

6. EVALUATION
For evaluating SepLog, we explore multiple facets. First,

we show SepLog operates correctly and show that the DB
recovery process is not harmed. Second, we show that the
performance improvement we claim holds.

Note that SepLog affects, and is affected, in addition to
the recovery process only by transactional commands (DML,
DDL, GRANT/REVOKE). Therefore, we have not exper-
imented directly on queries. In the benchmarks we ran
(TPCC), SQLs are run, but we do not micro-benchmark
these.

In each experiment, we reserved two full OSC nodes with
12 cores. Each node has an intel Xeon x5650 processor with
48 GB of RAM and an infiniband connection. For more
details regarding our environment please refer to [19].

In all experiments, when we refer to “Storage”, we refer
to an experiment that was conducted while the log files are
located on the server node drive itself. The reason for that
is if we do not use the local storage, we pass through the
network, and it is clear that implementing memory copy
without disk over network would have better performance.
Although we experimented on the environment NFS and
got the results we expected, our implementation performs
better. We do not show these results here, but focus on the
local storage results.

6.1 Correctness Evaluation
For the correctness evaluation, we built a few scenarios

that we executed and analyzed. These scenarios force a
recovery process to be initiated, showing how the process
behaves, so we can determine if the operation behaves as we
expect it to. In addition, we also built a scenario that is
irrecoverable and examined its execution.

It is important to note that our implementation substi-
tutes the storage layer. Therefore, we expect the byte array
given to the DBMS system from our implementation to be
the same as the one the original storage based implementa-
tion. Although, since the recover data is dependent on many
factors, a byte array comparison is not relevant. Therefore,
we experimented by crashing and recovering the system.

6.1.1 Recoverable crashes
Our recoverable crash experiments used the following sce-

narios:

1. All transactions were committed.

2. All transactions were rollbacked.

7



3. All transactions were pending (e.g. we have only open
transactions). No commands are being executed while
the crash occurs.

4. Some transactions were committed, while some trans-
actions were not. No commands are executed while
the crash occurs.

5. A large load is exhausting the DB using a mix of com-
mit and rollbacks. In this scenario, commands are ex-
ecuted while the DB crashes.

In all mentioned experiments but the last, we know what
results the DB should entail at the end of the recovery pro-
cess. The last experiment has a randomness factor that
prevents us from knowing what results we should expect.

All experiments ran twice - once when the SepLog server
remained up between the crash and the recovery, and once
when the SepLog server has been turned off after the crash,
and on before the recovery began.

For all experiments, we followed the recovery process closely,
and saw the DBMS engine roll the log using the innoDB log
component. At the end of the recovery process in all exper-
iments, the expected results were observed, except for the
last experiment, which does not have expected results.

We ran the last experiment multiple times due to its ran-
domness factor. The randomness is the status of the storage
writing of each command when the DB process is killed (the
crash simulation). For increasing the probability of storage
chunks being in transfer while the DB crash, we used more
writer processes than processors on our machine. All crash
recovery processes succeeded.

These experiments show we have not harmed the correct-
ness of the system and a recovery process can recover from
a crash. This was expected and we mainly ran these exper-
iments to confirm we do return the right data to our client,
the MySQL server.

6.1.2 Irrecoverable crashes
As in a storage based system, if one loses the redo-log

content a recovery cannot be completed successfully. In the
scenario of losing the only in-memory log copy, we expect the
system to not be able to recover and have a data corruption
that will result in a need to restore from backup.

We simulated, in most of the scenarios mentioned above,
a crash and log file loss. In all cases, the DBMS could not
recover and reported data corruption, as expected.

To make this scenario interesting we also simulated a DB
recovery from backup we have taken earlier. The recovery
process succeeded.

These experiments show that the system behaves as we
expect it to, and that a recovery from backup is feasible
using SepLog.

6.2 Performance evaluation
Our main hypothesis is that SepLog improves performance.

We have three main claims: 1. SepLog improves recovery
time. 2. SepLog increases the DBMS transactional through-
put. 3. SepLog decreases the DBMS transactional latency.

6.2.1 Recovery time
Since recovery time is dependent on many factors, some

of which are out of our control, measuring recovery time
would not be fair to both: traditional systems and SepLog.

Therefore, we decided to rationalize our claim instead of
experiment.

While recovery is executing, the system reads and writes
from and to the log. The reading is done to understand
what the content of the datafiles should be, while the write
is done to finalize the process for incomplete transactions.
In this process, the content of the relevant datafiles is read
and processed if needed.

We expect SepLog to accelerate this process because of
a reduction in parallel disk access. While the recovery is
executed, there is a large load on disk access. Both datafiles
and logfiles are being read and written to. The usage of
SepLog limits the load to be only on datafiles, reducing the
operating system and file system contentions on file accesses,
which we expect will improve performance as shown in the
next subsection.

Please note that, in the the SepLog engine is not running
when the recovery process starts, the log data will be loaded,
which means file access will occur to load the log content to
memory before SepLog can access to it. Although there will
be a file access, we still expect performance improvement
since it will precede the recovery process, decreasing the
parallelic load and the number of open handlers on/in the FS
and OS. In addition, there will still be no file write involved,
nor simultaneous access to log and data files.

6.2.2 Transactional Performance
We divide this section to two - micro-benchmark and full

DBMS performance evaluation.

6.2.2.1 Micro-benchmark.
In this section, we evaluate only the storage writing com-

ponent. We evaluate mainly the writing since, although the
log is written to often, it is barely being read. The only rea-
son to read from the log is a crash recovery or a user request
to do so. Therefore, the reading performance does not affect
the DBMS normal operation.

We evaluate the writing separately from the whole sys-
tem evaluation for two different reasons: 1. Convince that
the performance of the log component, without the DBMS
engine on top of it, improves. 2. Show different log writ-
ing behaviors to prove that SepLog is robust and provides
consistent performance.

Figure 3: Microbenchmark Throughput

In figure 3, we show the throughput of the log commands.
In this experiment, we extracted from the DBMS engine only
the log writing commands with the mutex that protects it,
and we simulate multiple users which simultaneously issue

8



Figure 4: Microbenchmark Latency

commands. The X-axis is the number of parallel users. Each
is simulated by a thread, while the Y axis is the transactions
per second. This simulation runs the “commit” command in
a loop on each thread. Therefore, there are two commands
that are sent to the SepLog’s storage engine. The first is
a write of a commit byte array sequence for the current
transaction and the second is a flush.

With one user thread, the throughput of the storage is
higher in this experiment. This is a result of two proper-
ties: 1. Operating system and File system optimizations. 2.
The overhead of both communication channels we use for
each command in SepLog. When increasing the number of
threads to two or more, the benefits of SepLog are substan-
tial. In previous sections, we suggested using direct writing
from the DBMS engine to SepLog. This will improve per-
formance for this scenario drastically since it will void the
“flush” command. In addition, the experiment presented
has not been optimized for networking. Therefore, we ex-
pect that, in a real system, the performance will be better.

The latency, which is presented in section 4, shows the
same behavior.

The behavior of both is occurring mainly because of the
mutex that is present in the DBMS storage writing code.
Since there are multiple simultaneous storage writers, this
mutex is necessary for resource concurrency protection. This
is not the case for SepLog, which can be implemented in such
a way that avoids this need.

Some other DBMS systems use one thread that flushes
the content to the log, which is named LGWR usually. Al-
though the write to disk seems like it can be faster than
SepLog architecture allows, the log writing is limited by a
semaphore and a mutex that protect the buffer access, harm-
ing the ability of the system to take advantage of the benefits
of writing from one process to disk as shown in the figures
because of contentions. With the additional proof from the
concept experiment we ran, the performance hit would de-
crease with the number of threads. This behavior is seen
on both graphs for two threads or more, making SepLog an
attractive option for systems with LGWR as well.

It is noticeable that the throughput decreases with the
number of threads. This is because of to the mutex behavior
in this situation, regardless the I/O commands.

In addition to these experiments, we ran additional ex-
periments in which we send messages to the log in different

orders to examine the robustness of SepLog. The results
above show the performance of cyclic (sequential) log writ-
ing; the DBMS writing pattern to the log. We also exper-
imented with writing in place, in a reverse order, and in a
random order to the log content. In all experiments, results
were consistent.

We conclude that SepLog will perform better in case of
two or more threads due to network properties, and will
perform better in the case of one thread due to the mutex
and semaphore that have to be used for log communication
in this case. In both cases, SepLog will perform better –
SepLog will have higher transactional throughput and lower
transactional latency.

6.2.2.2 Full DBMS.
In this subsection, we will examine the full DBMS behav-

ior using SepLog instead of using its traditional log compo-
nent. We run two different set of experiments: 1. targeted
use cases that show the SepLog properties. 2. TPCC.

Targeted tests

To show that we receive the expected results we run two
tests:

1. Commit test. In this test, we flood the DBMS en-
gine with commit commands from parallel sessions.
This test is designed to exhaust the flush mechanism,
which, in SepLog and storage based logging, requires a
roundtrip between the DBMS engine and the storage
device/remote node.

2. Small transaction test. In this test, we show that, in
normal DBMS behavior where flushes happens once
in a while, SepLog behaves much better than in cur-
rent environments. In this experiment, each thread
works on its own tble in order to not overload the
storage subsystem, and each transaction leaves the ta-
ble empty when it is committed. The reason for that
is, in this way, the checkpoint flushes one block on
each commit, which is logically empty, minimizing the
checkpoint ability to influence our results drastically.
In each transaction, there are a few DML commands
that insert and update data, while the last command
deletes all the table content. On average, there are 6
commands in each transaction.

After running each experiment 3 times, we ran the same
experiment for the last time, while profiling the behavior of
MySQL (using cachegrind - [8]) to detect which bottlenecks
exist in each logging option.

In figure 5, we show the performance of using the storage
based commit (original MySQL) versus the SepLog based
commit (MySQL + SepLog) when running the full MySQL
stack. It is noticeable that, although not much better (be-
twen ∼1.1 times better, upto 2 times better), SepLog is
always better, while the variance of the SepLog throughput
is much lower. The reason the original MySQL base behaves
like it does, according to the profiling process we conducted,
is the mutexes within the log code and the checkpoint proce-
dures interaction. The reason SepLog is consistent with its
performance is that the usage of the mutex for the log writ-
ing is much shorter, leading to slightly better node resource
management.

9



Figure 5: Commit Test Throughput

Figure 6: Small Transaction Test Throughput

In figure 6, we show the performance of an actual load
that mostly exhausts the logging component. In this figure,
it is noticeable that SepLog improves performance upto ∼12
times than the original MySQL. It is also noticeable that the
performance is consistent with storage that increases with
the number of threads suggesting that, storage-wise, there
is a “sweet spot” for the number of processes that the sys-
tem performs best with, and that one thread cannot utilize
the full DBMS ability. This experiment shows that SepLog
utilizes the resources much better. Using the CacheGrind
profiling, we notice the IPC and MPI overheads are those
that delay the system, and that both are taking consistent
execution time, which we believe leads to a more reliable
and consistent system as a whole.

Figure 7: Tests Latency

In figure 7, we show that in both test cases, the latency
of SepLog is better. In this figure, the Y-axis has a log-
arithmic scale. The latency is determined by the time a
command is sent to the storage/remote node in case of a
non-commit command and of a communication round trip
in case of a commit. It is noticeable that, in the commit
test case, SepLog and the original innobase logging system
can compete. This is due to our design, MPI + IPC. Us-
ing a different communication technology would affect the
performance.

When commit is less common, as in real database usages
when other commands are actually committed and not only
the commit command itself, the latency improvement begins
with an improvement of 100 times.

In conclusion, SepLog entail the expected performance im-
provement we expected it to. Using a more efficient commu-
nication method between the DBMS node and the SepLog
server will improve performance even more, resulting in a
system that could process even more transactional requests
than we can today. It is important to notice that although
not efficient as other techniques, the MPI and IPC perfor-
mance are consistent.

TPCC

We ran the TPCC benchmark using the oltpbenchmark
tool [7]. TPCC is not meant to exhaust the logging compo-
nent but the DBMS as a whole. Therefore, the results are
indicative for the effect our change had on the full DBMS,
and, in some cases, the improvement is minimized due to
other DBMS components that are exhausted.

Oltpbenchmark has two parameters that are crucial for
the test: Scale and Terminals. Scale determines how big
the data set that is used will be. Terminals determine how
many concurrent clients will execute queries on the DB. The
benchmark tool we use was designed in a way that minimized
any tool stalls, allowing it to exhaust the system.

Since TPCC exhausts storage, memory, CPU, and the log-
ging component, the performance improvement, although it
exists in all tests ran, is limited by the resource that is ex-
hausted. In other experiments, we targeted and exhausted
only the log component, so we reached the logging com-
ponent capacity before hitting others walls, while, on the
TPCC benchmark, the other walls are hit more often, lim-
iting the performance improvement SepLog can offer.

We ran the TPCC test with scales of two, six, and twelve,
and with two and six terminals. In our environment, setting
six terminals loads the machine to its full CPU capacity.
Increasing the number of processes to seven or more pro-
duces inconsistent results due to operating system schedul-
ing. Therefore we do not show, nor discuss, these results.

We report here the results of the throughput improvement
between the original MySQL and MySQL+SepLog. For ex-
ample, where 2 appears in Table 1, SepLog + MySQL ex-
ecutes twice the amount of transacations per second than
the original MySQL. The average latency improvement is
nearly the same as the throughput improvement for all the
tests conducted. Therefore, we chose to report the median
latency.

In Table 1, we show the throughput improvement between
MySQL + SepLog to the unmodified “Original” MySQL.

10



2 6
HHH

HHSc
Te

Imp Th Imp Th

2 5.382 126.01 2.146 117.27
6 4.234 94.41 1.368 59.18
12 4.463 112.86 1.262 54.22

Table 1: TPCC throughput improvement
Te - Terminal
Sc - Scale
Th - SepLog throughput
Imp - Improvement (SepLog Th / Original MySQL Th)

XXXXXXXXXScale
Terminals

2 6

2 14.4897641 3.86586212
6 14.0033568 2.52732689
12 10.9591736 2.25611341

Table 2: TPCC median latency improvement

For example, in the table, we show that for two termi-
nals, and a scale factor of two. Our implementations exe-
cutes ∼5.4 times more TPS (Transactions Per Second) than
the unmodified original MySQL. In this case, the original
MySQL ran 23.41 TPS on our environment, while our im-
plementation executed 126.01 TPS.

When executing more terminals, the contentions for both
the original MySQL and SepLog + MySQL are shifting
to the operating system resource control and dependencies
among transaction. That motivates us to focus on a small
number of terminals for analyzing the results.

For two terminals, the throughput behavior for scale change
of SepLog+MySQL is interesting. For scale 2, we get the
best results. This is a result of MySQL cache management
that allows efficient execution and row locks when the rows
we use are already in memory. For scale 6, the cache be-
comes bigger, and, therefore, the cache management is re-
quired to flush and bring data from disk. Three main wait
events are noticeable: disk access (for data), CPU, and row
locks. The most interesting behavior appears when the scale
is set to 12 - the execution is more efficient than 6. This is
the result of less contention on row locks. In scale 6, the
same rows are used across transactions, while, for scale 12,
this sharing decreases and the wait events shifts mainly to
disk access and CPU. In scale 2, although the contention is
bigger on row locks, the cache usage compensates for it and
the results are better.

In Table 2, we show the median latency improvement. We
do not show the latencies themselves since the median la-
tencies are between 0.01s to 0.046s for the SepLog+MySQL,
and, therefore, the improvement from the Original MySQL
is what should be emphasized. The latency measurement
includes, in addition to the DBMS engine operation time,
the communication between the test process to the MySQL
process. For the median latency, the less processes we have
and the less data we have, the better the system performs.
In addition, the improvement for the median latency is much
better than the average latency, which is as the average
throughput improvement. It is still unclear if we can de-

crease the variance of the latencies. Some of it is dependent
on the user calls themselves. Therefore, it should generally
be further researched.

In conclusion, the TPCC shows that, even in a very loaded
scenario that utilizes all the DBMS resources, SepLog im-
proves the DBMS performance.

7. FUTURE WORK
SepLog introduces many opportunities. Our research is

targeted towards making SepLog more robust and acceler-
ating the total system performance.

Our first, and very exciting, idea is parallelized log. We
noticed writing to the log, as long as it is synchronized by
the system for allocations, can be parallelized. Not only the
writing itself, but also the flush command can be modified
to flush only the current transaction content instead of all
the previous transactions. This is valid thanks to the DB
isolation level that requires only committed data to be seen
by later transactions and forces ordering amongst commit-
ted transactions. This offers a fundamental change to the
logging component with a big significance and effect: two log
files can be active simultaneously, which poses a challenge
to the checkpoint process. We plan to tackle that issue in
our next work.

Another exciting idea is building a distributed logging sys-
tem based on non-volatile memory using volatile memory.
This goes hand-in-hand with another exciting idea: central-
ized log system for multiple databases. The first can be
implemented in many forms, starting with the same log be-
ing sent to multiple nodes upto dividing the log into chunks
that are hosted on different in-memory log nodes (similar to
work that has been mentioned in section 2). The second
allows the combining of different DB logs on the same log
server logs, which allows the increasing of the system stabil-
ity by concentrating on a small limited number of SepLog
servers, instead of the number of DBMS servers. This opens
the door to many other interesting opportunities that arise
from having multiple DB logs in one place, like detecting a
cross system anomaly using log analysis.

In addition, following the ideas presented here, we can
modify the cyclic log concept to be based on RAM instead
of on files. One can allocate a node with a pool of RAM,
instead of pre-allocating files, which the DB writes to di-
rectly without referencing files and synchronizing its access.
This modification reduces the DBMS engine responsibility
and removes most of the latches within the log connector,
transferring this responsibility completely to the log compo-
nent.

Log archivals are affected by the new SepLog approach.
One can implement archivals directly on the remote SepLog
server, although it will require fast storage and would af-
fect the checkpoint mechanism. An approach to decrease
this contention is to distribute the archival writing. It is
clear that archivals should not be held in RAM. Therefore,
if archivals are needed for backup, old fashioned disks are
a necessity. These do not void the benefits of SepLog. We
will explore the benefits of using SepLog with archivals in
the future.

The last idea we will mention here is the ability to im-
prove the checkpoint process by borrowing the same con-
cept - instead of waiting for the disk flush to end, hold the
non-flushed blocks on a remote server until the disk flush
ends.

11



8. SUMMARY
In this paper, we presented SepLog, an in-memory DBMS

logging system that holds the logging data on a remote ma-
chine instead of on non-volatile local storage in current sys-
tems. We explained how current logging system works in
details, and why we believe SepLog is a good concept to use:
the usage of RAM allows SepLog to offer increased transac-
tional performance (increased transactional trhoughput and
lower transactional latency). We compared performance to
prove that SepLog performs as expected, which uncovered
additional DBMS bottlenecks in the DBMS architecture.

SepLog does not harm the reliability or the durability of
the system, e.g. crash recovery processes will end success-
fully, and we believe it is as safe to use as current systems
that are based on hard drives for the logging data.

SepLog opens the door for many logging optimizations,
such as parallel log writing and distributed logging, which
will improve the logging system performance even more, and
might change the way logging is managed in the future.

9. ACKNOWLEDGMENTS
This work was supported in part by an allocation from

the Ohio Supercomputer Center.
This work uses the MVAPICH [20] for using MPI over

infiniband within the Ohio Supercomputer environment.

10. REFERENCES
[1] M. Balakrishnan, D. Malkhi, J. D. Davis,

V. Prabhakaran, M. Wei, and T. Wobber. Corfu: A
distributed shared log. ACM Transactions on
Computer Systems (TOCS), 31(4):10, 2013.

[2] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: Distributed data structures over
a shared log. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 325–340. ACM, 2013.

[3] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-a
transactional record manager for shared flash. In
CIDR, volume 11, pages 9–20, 2011.

[4] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An analysis of linux scalability to many
cores. 2010.

[5] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers,
J. Gehrke, and W. White. Fast checkpoint recovery
algorithms for frequently consistent applications. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 265–276.
ACM, 2011.

[6] S. Chen. Flashlogging: exploiting flash devices for
synchronous logging performance. In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of data, pages 73–86. ACM, 2009.

[7] C. Curino. oltpbenchmark.
http://oltpbenchmark.com, 2014.

[8] V. Developers. Valgrind - cachegrind.
http://valgrind.org/docs/manual/cg-manual.html,
2000.

[9] C. Dirik and B. Jacob. The performance of pc
solid-state disks (ssds) as a function of bandwidth,

concurrency, device architecture, and system
organization. In ACM SIGARCH Computer
Architecture News, volume 37, pages 279–289. ACM,
2009.

[10] A. Foong, B. Veal, and F. Hady. Towards ssd-ready
enterprise platforms. Google/Intel Corporation, 2009.

[11] T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 15(4):287–317, 1983.

[12] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Aether: a scalable approach to
logging. Proceedings of the VLDB Endowment,
3(1-2):681–692, 2010.

[13] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Scalability of write-ahead logging on
multicore and multisocket hardware. The VLDB
Journal, 21(2):239–263, 2012.

[14] S.-W. Lee, B. Moon, and C. Park. Advances in flash
memory ssd technology for enterprise database
applications. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
data, pages 863–870. ACM, 2009.

[15] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A case for flash memory ssd in enterprise
database applications. In Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 1075–1086. ACM, 2008.

[16] S. Liang, R. Noronha, and D. K. Panda. Swapping to
remote memory over infiniband: An approach using a
high performance network block device. In Cluster
Computing, 2005. IEEE International, pages 1–10.
IEEE, 2005.

[17] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R.
Stan. How i learned to stop worrying and love flash
endurance. In Proceedings of the 2nd USENIX
conference on Hot topics in storage and file systems,
pages 3–3. USENIX Association, 2010.

[18] Oracle. Mysql community - oracle.
http://www.mysql.com/products/community/, 2014.

[19] OSC. Ohio supercomputing center: Oakley cluster.
https:

//www.osc.edu/supercomputing/computing/oakley,
2014.

[20] D. K. Panda. Mvapich: Mpi over infiniband,
10gige/iwarp and roce.
http://http://mvapich.cse.ohio-state.edu, 2014.

[21] D. A. Rene Rivera, Beman Dawes. Boost.
http://www.boost.org, 1998.

[22] B. Schroeder and G. A. Gibson. Disk failures in the
real world: What does an mttf of 1, 000, 000 hours
mean to you? In FAST, volume 7, pages 1–16, 2007.

12


