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ABSTRACT

Scientific data is frequently stored across geographically dis-
tributed data repositories. Although there have been recent
efforts to query scientific datasets using structured query oper-
ators, they have not yet supported joins across distributed data
repositories. This paper describes a framework that supports
join-like operations over multi-dimensional array datasets
that are spread across multiple sites. More specifically, we first
formally define join operations over array datasets, and estab-
lish how they arise in the context of scientific data analysis.
We then describe a methodology for optimizing such opera-
tions — components of our approach include an enumeration
algorithms for candidate plans, methods for pruning plans
before they are enumerated, and a detailed cost model for
selecting the best (cheapest) plan. We evaluate our approach
using candidate queries, and show that the optimization effort
is practical and profitable — query performance was improved
significantly using our approach.
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1 INTRODUCTION

The need for supporting scientific array data processing using
declarative languages or structured operators has been raised
in the past, and many systems addressing this need have been
built [7, 39, 41]. These systems simplify the specification of
processing as compared to the adhoc approach and/or using
low-level languages. Some of these systems require that the
data be loaded into a database [7, 41], whereas others can
provide query processing capabilities working directly with
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low-level data layouts, such as a flat-file, or data in formats
like NetCDF and HDFS5 [15, 39].

One of the issues that remain unaddressed is providing
advanced query capabilities over data distributed across mul-
tiple geographically distributed repositories. The need for
such functionality is increasingly arising as scientific data is
growing in size and complexity. In supporting structured
query operators over distributed data, most common query
operators (selections, projections, and aggregations) are rela-
tively straightforward to support. However, the classical join
operator and its variants [33] are challenging to support when
the data is at geographically disparate locations. In this paper
we focus on the challenge of executing and optimizing the
join operator over geographically distributed array data.

As a motivation, consider the current status of dissemina-
tion of climate data. In the United States, much of the climate
data is disseminated by Earth System Grid Forum (ESGF)!.
However, world-wide, climate data is also made available by
agencies of other countries, such as those from Japan, Aus-
tralia, and others. A climate scientist interested in comparing
data across datasets collected from different satellites or agen-
cies will need to run multiple queries across these repositories.
Similarly, data related to other disciplines spreads across mul-
tiple repositories as well- e.g. genetic variation data is found
in 1000 (Human) Genomes Project and 1000 Plant Genomes
Repository.

1.1 Existing Approaches

Today, queries over distributed data are executed in one of
several ways. First, often scientists simply copy all relevant
data from repositories locally and process it using existing
tools — a solution very unlikely to be feasible as data sizes
increase. Writing a workflow engine can be another option,
but details of data movement, partitioning of the work, and
its placement are handled by the developer. Moreover, indi-
vidual operations in a workflow are still written in a low-level
language.

Other approaches use ideas from the database (DB) domain
to optimize overall query performance. Query optimization
have been thoroughly researched before in the domain of
relational data [11], however, these systems work on data at
a central location or a cluster. For tighly coupled settings,
distributed query plans use Rule Based Optimizers (RBO)
[2,27,34, 46]. RBOs build execution plans from parsed queries
based on pre-defined set of rules or heuristics. Heuristics are
used to allow taking optimization decisions for each node

ISee https:/ /www.earthsystemgrid.org/about/overview.htm
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Figure 1: Alternative Ways of Evaluating a Query Across
Multiple Repositories

of the parsed query tree separately, e.g. a local decision. An
example for such a heuristic is: “execute each query in the most
distributed manner possible, until data unionization or aggregation
is necessary”. Some of the DB query optimization approaches
have been extended to geographically distributed data [2, 8,
15, 39, 44, 45].

Data processing has increasingly moved towards using im-
plementations of the Map-Reduce concept [14]. Most systems
in this space are limited to processing within a single cluster.
Note that joins can be supported over such systems using
a high-level language, like in Hive [40]. In such cases, join
optimization [1, 43] is based on a set of rules or heuristics
that will not be sufficient to optimize for geo-distributed data
join queries. MapReduce systems have also been extended
to geographically distributed data [24], but we are not aware
of any work optimizing the join operation in such settings,
which requires careful attention.

1.2 Challenges

To illustrate the challenges in executing join(-like) queries
across multiple repositories, we take a specific example. Given
a declarative query the system needs to decide what to do
for providing the intended results — a process referred to as
building an execution plan. An execution plan is a tree represen-
tation of ordered steps to perform for retrieving the expected
results. Fig. 1 shows two simple execution plans for execut-
ing a join between two one-dimensional arrays A and B. A is
stored entirely on Machine; and is of length 100, whereas B
is distributed between Machine, and Machines, each having
an array of length 10. The join selectivity, which means the
percent of the results holding the join criteria out of all possi-
ble results generated by a Cartersian multiplication of both
joined relations [22], is 1%. In Plan 1, the variable 2 is sent
to both nodes Machine; and Machines. A partial resultset of
length 10 is produced on each machine, and then the reuslt-
set from Machines is sent to Machine, for combining with the
local resultset. The final resultset is sent to the user. Plan 2
combines the distributed array B before performing the join
on Machine; .

Multiple challenges have been implicitly introduced here.
Translating a query to a plan have been thoroughly researched
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before [9, 11], yet building execution plans that consider dif-
ferent processing ordering on different nodes while the data is
distributed among multiple nodes and sites have not. In our
example, anticipating which of the two presented plans would
execute faster is not trivial. A possible reason for choosing
Plan 1 will be that more calculations are performed in parallel.
However, with communication latencies taken into account,
Plan 2 may be preferable. In addition, when two or more joins
need to be performed, producing an execution plan becomes
hard since the amount of distribution and evaluation options
increases exponentially.

1.3 Contributions

This paper presents a methodology for executing and optimiz-
ing joins over geographically distributed array data. We will
show in this paper that Cost-Based Optimizers (CBO) provide
better optimization opportunities for our target setting, where
simple heuristics are not sufficient. We develop algorithms
for building distributed query execution plans, while prun-
ing not efficient and isomorphic plans. We introduce a cost
model for distributed queries. The cost model considers the
physical distribution of the data. We have extensively evalu-
ated our query plan generation and execution modules and
demonstrated their effectiveness.

2 DISTRIBUTED JOINS

Join operations help compare data across multiple relations,
and have been extremely common in the relational database
world. In scientific array data analysis, joins are also essential
for analyzing data and confirm hypotheses. As an exam-
ple, consider a simple hypothesis such as “when wind speed
increases, the temperature drops”. Verifying this hypothesis us-
ing climate simulation outputs involves multiple joins across
datasets. For detecting the change (increases /drops), each rela-
tion has to be compared with a subset of itself, i.e., we perform
what is referred to as a self join. The pattern detection is a regu-
lar join across two relations.

2.1 Formal Definition

The operator < signifies a join — A =g B joins the relations A
and B based on the set of conditions C and using the aggre-
gation function G. C is a concatenation of conditions in the
form A’ = B, using A (and) or V (or), where A’ and B’ can be
either a set of dimensions or the relation names themselves
(the latter being referred to as joining by value). The given G
in the superscript allows controlling the aggregation function
used for the join (if no aggregation function is mentioned, the
default function to be used is AVG (average)).

If C is not mentioned, i.e., the operation is A > B, common
dimensions of both relations are joined based on their names,
while the rest of the dimensions are aggregated by using an
aggregation function. On the other hand, when the join ex-
plicitly states certain dimensions, an aggregation over the
non-mentioned dimensions is expected. One could use the
rename operator, p om0, Which renames a dataset, variable,
or a dimension for forcing name match when necessary. It
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Figure 2: A walkthrough the join process

may be necessary to allow joining only by values (without
limiting the dimensions), an operator we mark as < and is
similar to cartesian multiplication.

In Figure 2 we show a walkthrough the execution of the
join A <4 41=p.41 B. The common values along the joinned
dimension, d1, are 2 and 3. Since the other dimension in this
array, d2, does not appear in the join criteria, aggregation has
been used for it. An additional dimension has been added to
record the data source, referred to in the figure as d3.

SELECT A.temp - B.temp

FROM TEMP A, TEMP B

WHERE A.sample_date = B.sample_date - 1
AND A.longitude = B.longitude

AND A.latitude = B.latitude

Figure 3: SQL for Query Example

In Figure 3 we show a SQL (Structured Querying Lan-
guage [31], a declarative language to represent queries [9])
for a subset of the query stated in the beginning of this sec-
tion. The SQL shown is equivalent to the request: “Return
the temperature difference for each day from its previous day”. In
the query, we first rename both relations from TEMP to A and
B — this is done since this query is a self-join and therefore we
need to be able to address both relations seperately. We can
look at relation A as if it represents a specific day temperature,
while B represents the temperature of the day before. There-
fore, the output is, for each distinct latitute and longitude, the
value of today’s temperature minus yesterday’s temperature,
as requested.

2.2 Execution Plans

An execution plan, or simply a plan, is a tree representation
that contains processing instructions to an execution engine
for providing the correct query results. The plan contains an
hierarchical ordering of operators, each of which has at most
two children nodes. When the tree is followed from the bottom
to its top the intended query results are returned. In Figure 4,
we show two possible trees for the query: A B C (we
omitted the A > C > B option). Each plan shows a different
ordering of operations that provides the intended results.

Plan1 Plan2
(AxB) ™ C A (BxC)

Figure 4: Non-distributed plan samples
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Figure 5: Examples of Distributed Plans

Optimizing (or choosing) query plans, and especially join
optimization, has been extensively studied in the database
community. The distinct part of our work is optimizing when
the data and execution are geo-distributed — for example, a sit-
uation where cluster one contains the temperatures in Canada
and the U.S., while cluster two contains the temperatures
elsewhere.

A distributed plan has additional information within each
node, as well as additional nodes, which provide the nec-
essary information for parallel and distributed execution of
queries. In Figure 5 we demonstrate two different distributed
execution plans for the simple query A < B where A is an array
distributed over three nodes, 1, 2, and 3, while B is an array
distributed over 2 nodes, i.e, nodes 3 and 4. Plan 1 utilizes the
most parallelism possible in this case — 3 nodes process data
in parallel, and afterwards all data are sent to node 1 where
it is accumulated and unionized (unionize means combining
multiple datasets to one). Plan 2 demonstrates the other ex-
treme, in which all the data is copied to one node, which then
processes it. Since only one node processed the data, there is
no need to unionize data. These are just the two extreme plans,
among many possible options.

More broadly, distributed execution plans need to represent
parallel execution correctly, including representation of data
communication among the nodes, unionization, and synchro-
nization. There can be many options for such distribution. For
example, as one extreme, all the datasets content is collected
to a central node, and joined there (as presented in Figure 5,
Plan 2). After the join was processed, the results are tunneled
either to the client, if this is the final plan step, or pipelined to
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the next step defined by the query execution plan. Another
extreme can be as follows: since a join is performed between
two relations, we choose one relation that we refer to as the
internal relation. The internal relation is kept stationary, while
the other (external relation) is sent across the network to all the
nodes that contain the internal relation. Subsequently, each
receiving node executes the join/s and the results are sent
forward according to the execution plan. Yet another option
can be as follows: we force each machine to have at most one
dataset of each relation it holds by unionization of the mul-
tiple datasets each machine has before processing, and then
rest of the processing can be done similarly to the way it is ex-
ecuted for the previous method — the sample in Figure 5, Plan
1, demonstrates such a plan. The advantage of this approach
is that it decreases the number of times data movement occurs
and still allows parallel execution of joins.

3 PLAN SELECTION ALGORITHMS
3.1 Query Plans

Formally, an execution plan for a given query is a tree repre-
sentation of a query, where each node has at most two children,
left and right. Each tree node represents either a source (rela-
tion, array, or dimension) or an operator. Each node outputs
a data stream. Each operator node receives up to 2 incoming
data streams. In the case a node represents an operator, the
operator applies to the node’s inputs.

In extending the plan to a distributed plan, additional op-
erators are introduced (An example plan has already been
introduced in Figure 5). We introduce three new node types:
Sync, SendData, and Union. Sync delays the beginning of its
parent operation until all of the children nodes have com-
pleted execution. A SendData node implies that machines that
execute the children nodes need to send the produced results
to a set of nodes. Thus, this operator achieves distribution
of data from a set of machines that produced a dataset to a
(possibly distinct) set of machines that will later execute op-
erations on that data. Union nodes are used to accumulate
distributed data that was received.

Each node has a tag that holds information needed for the
operator execution. The tag includes what type of node it is,
what subsetting conditions it executes (if applicable), statis-
tical information, and operator specific data. For example, a
SendData node’s tag contains which data is sent, where from,
and to which node.

3.2 Plan Distribution Algorithm

Our goal is to create an efficient Cost Based Optimizer (CBO)
to find the optimal distribution of a query. A CBO is an alter-
native to a Rule (or Heuristic) Based Optimizer (RBO). RBO’s
are unlikely to build optimal plans in this case due to the com-
plexity of our queries and diverse set of environments where
they may be executed.

For implementing a CBO we need to first span or enumerate
different execution plans and subsequently evaluate costs of
these plans. We enumerate the plans using a two-step process:
1. choosing between different ordering of operators, leading
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to a set of non-distributed plans — these are built using a simple
RBO since we span all options here. 2. enumerating all pos-
sible distributed plans corresponding to each non-distributed
plan, each of which involves different choices for where the
data is processed and required data movement. An advantage
for this two-step method is that producing all non-distributed
plans has been well researched previosly [11]. Our focus is on
the second step, and the details are presented next.

3.3 Pruning Search Space

The key challenge we face is that the number of distribution
options for a given (non-distributed) plan can be extremely
large. When all options of data sending are considered, a
blowup of options occurs. For example, if n nodes are in-
volved, n" options of data movement exist. However, not all
options have different costs or are even sensible candidates.
As a simple example, one server can send its data to a neigh-
boring node, accept data of the same node, or even do both.
Given this, we must be able to prune the search space.

Our first observation is that many of these options are es-

sentially a repeat of each other. For example, assuming ho-
mogeneity of nodes, and given data distributed on 3 nodes,
processing on 2 nodes should cost the same irrespective of
which of the two nodes process it. We form the following two
rules:
Rule 1: A node can receive data only if it does not send any
data. This rule prevents two nodes from swapping data with
each other. The following is an analysis of the reduction in
spanning options. Out of n nodes that have the data, we pick
i nodes that will receive data. Thus, there are n — i nodes left,
which send their data to all options of the chosen i nodes.

Intuitively, a plan in which one node processes another

node’s data, while the other node processes the first node’s
data, is more expensive than a plan in which the nodes do not
swap the data. Therefore, the optimal plan cannot be pruned
by this rule.
Rule 2: Isomorphism Removal. Rule 1 prunes options which
are more expensive than other plans, yet, many of the plans
are still isomorphic. Clearly, there is no particular advantage
of choosing one plan over other if they are isomorphic. We
avoid the generation of isomorphic plans using the following
approach. First, we assume that nodes are ordered and ranked
by a unique identification number. With that, we require that
a higher ranked node receives data from at least the same
amount of nodes its lower ranked neighbor does. For example,
if the first node, assumed to have the highest rank, receives
data from 4 nodes (including itself), the second node can
receive data from at most 4 nodes, and so on. The optimal
plan is again not pruned since all isomorphic plans evaluate
to the same cost (unless the nodes are not homogenuous; in
which case the highest rank node will always be cheaper to
process on than any other node, maintaining the correctness
of the claim).

For example, assume array A is distributed on nodes ranked
1,2, and 3. In Figure 6 we demonstrate all possible distribu-
tion options following the given rule. Notice that any other
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Figure 6: Distribution Options for An array (Using Rule 2)

option, given the nodes ranking, would either not make sense
in a non-homogeneous setting, or would repeat an already
existing option when nodes are homogeneous. For example,
consider the semi-parallel option of sending the data from
node 2 to node 1 instead of from node 3, while node 3 keeps
its data itself. This would either imply using a weaker node
to process the data is preferable, or will be equivalent to the
semi-distributed option presented.

Algorithm 1 enumerates all distributed plans for a given
non-distributed plan. The input to this algorithm is a list of
ranked nodes (ordered in an array), on which the data is dis-
tributed. The goal of the algorithm is to return all distribution
options for populating each distribution node’s tag. The al-
gorithm iteratively builds all the options of sending data, by
enumerating all options for processing nodes (i represents the
number of nodes processing data, i.e., by Rule 1 maintaining
their data locally. The algorithm spans all options for i be-
tween 1 to the total number of nodes). In lines 5-7, we build
a base option for the current i, which is the option where each
“free node” (a node that is not processing its own data) send
it to the first node. In line 8 index j represents the number of
nodes that receive data from other nodes (j of the base options
is 1). In line 10 we define k to be the number of nodes not
sending data to the first node. In line 15 all options spanned
by Algorithm 2 are added (based on the sending/receiving
pattern demonstrated by the resulted array) — we send data to
higher ranked nodes from the lower ranked ones, assuring an
optimal plan will not be pruned.

This algorithm provides all distribution options for a spe-
cific SendData node. Each option is used to fill a SendData
node’s tag.

In Algorithm 2 we use a reverse waterfall method to create all
sending options. This algorithm outputs an array of numbers,
each represents how many free nodes need to send data to the
matching node. In general, we first determine the most dis-
tributed setting by initializing an array to contain the largest
number of nodes each receiving node may receive data from
(line 7). Then, in lines 11-30 we bubble up nodes by following
Rule2 - the number of nodes sending data to the lower ranked
nodes are systematically decreased while their higher ranked
neighbors are increased.

For example, if there are 4 nodes, and 2 nodes are set to re-
ceive data, the reverse waterfall will create the following arrays:
1,1,0,0, 2,0,0,0 marking that for the first array both nodes

receive data from one node each, while for the second array
one of the nodes sending data to the second node have been
bubbled up, resulting in the first node receiving data from both
free nodes. The reason we call this method the reverse waterfall
is since one can look on the numbers as if when a number to
the right decreases, the number to its left increases. Notice
each array represents a unique option, since we always send
data from the weakest node to the strongest one, and array
such as [1,1,0,0] would mean the lowest ranked node, 4, sends
its data to the strongest one, node 1, while node 3 sends its
data to node 2.

Algorithm 1 Build Plans Without Repetitions

1: function DATASENDWITHOUTREPETITIONS(node list)

2 options «+ 0

3 n < number of nodes (receiving data)

4 fori< l.ndo > i- number of nodes not sending data
5: V jbaseOptions. fromi = i > Initialize senders
6 V j<ibaseOptions.toj = j > Send to itself
7 VjsibaseOptions.toj = 1 > All nodes send to first
8 forj < 1.min(i,n-i) do

9: currOption « duplicate(baseOption)

10: fork« 1.i—1xn—iido

11: hasToGet < mink,i— 1

12: V1=0..hasToGet—1cCurrOption.toi +t =t + 1

13: for 1 + 1..(k-hasToGet) do

14: ar < buildArraysOfOptoins(n,j,1)

15: options U = span options based on ar
16: end for

17: end for

18: end for

19: end for

20: return options

21: end function

4 COST MODEL

Cost models for facilitating query optimization in a non-distributed

environment are well researched [4, 11, 16, 23]. Enabling a
Cost Based Optimizer (CBO) for distributed settings involves
a number of additional challenges, particularly, network la-
tency and bandwidth.

To motivate the need for a nuanced model, consider the
following example. Suppose there are two Value Joins ()
with a selectivity of 10%, and using three relations (A, B, and
C), each containing 100 tuples. We expect the first join, be-
tween A and B, to produce 1,000 tuples, and the second one
to produce 10,000 tuples. Assume the data is distributed in
the following way: array A is distributed on nodes 1 and 2,
array B is distributed on nodes 3, 4, 5, and 6, and array C is
distributed over nodes 1 and 2. The plan that involves most
parallelism would require copying array A to the nodes that
contain array B, and doing the same for array C. This plan’s
execution involves: sending data to 4 nodes from 2 (50 tuples),
synchronization across 4 nodes, sending data to 4 nodes from
2 (50 tuples), synchronization across 4 nodes, and processing
of 27,500 tuples on each processing node. If the same join
is executed on nodes 1 and 2, its execution would involve:
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Algorithm 2 Build arrays to spread data holding rule 2

1: function BUILDARRAYSOFOPTOINS(TotalNodes ReceivingNodes
NodesToAssign)

2: > How many nodes will be spread
3: fori < 1..NodesToAssign do
4 actualRcvNodes < mini, ReceivingNodes
5: > How many nodes receive data
6: forj < 1..actualRcvNodes do
7: ar < mostDistributedOption
8: arRet U ar
9: lastPopulated < LargestNonZeroIndex(ar)
10: ar < duplicate(ar)
11: while lastPopulated ! = 0 do
12: while ar[lastPopulated] ! = 0 do
13: t < lastPopulated — 1
14: ar[t+1] < ar[t+1] — 1
15: ar[t] <« ar[t] + 1
16: while ar[t] > ar[t-1] do
17: tt-1
18: if t == 0 then
19: break
20: end if
21: ar[t+1] «+ ar[t+1] — 1
22: ar[t] « ar[t] + 1
23: end while
24: if t == 0 then
25: break
26: end if
27: arRet U ar
28: end while
29: lastPopulated < lastPopulated — 1
30: end while
31: end for
32: end for
33: return arRet

34: end function

sending data to 2 nodes from 4 (25 tuples), synchronization
across 2 nodes, sending data from 2 nodes to 1 (25 tuples),
synchronization across 2 nodes, and processing 55,000 tuples
on each node. If a relatively slow wide-area-network is con-
necting these nodes, synchronizations and data movement
operations can be expensive. Thus, it is quite possible that
despite more computations on any given node, the second
plan would execute faster.

The goal of our model is to assess these options and choose
the best plan. Note that the cost model itself can be very de-
pendent upon the communication and processing modalities
used. We discuss the model presented at a high-level.

4.1 Costs:

We define Cn as the cost of the node n and En as the size of the
expected resultset after the node operator is executed. Costs
are evaluated recursively, starting with the root. Each node has
up to two children nodes, denoted by n — left and n — right,
where the right child node is populated only for operators
that accepts two inputs, like joins. For each operation we list
its cost in Table 1 and its expected resultset size in Table 2. The

Operator Cost

.. En
Projection Cn=-———
réormalll Jg;"
. n—le .
Filter Cn=———"— i— length
normalizer f]{]ezj;ms :
Penalty™mOfNodes—1 s ppy En
Distribute Cn= Y - - ;
PacketSize X normalizer — normalizer
. En—left+En— right
Join over Cn= -
normalizer
dimensions
. En—left x En — right
Join over Cn= / - &
normalizer
values
. Ek
Union Cn= ——— Xk — numOfNodes
ke{n—leftun—sright} normalizer
Sync Cn = PenaltymOfNodes—1
En
Source Cn=—F——
normalizer

Table 1: Costs of a node by operator

Operator Expected Results
Projection  En=En— left
Filter En=En— left x n — selectivity
Distribute  En=En — left
Join over En=En—left+En — right X n — selectivity
dimensions
Join over En=En— left Xx En — right X n — selectivity
values

Ek <k — numO fNodes
Union En= ke{n—leftUn—right}

n — numO fNodes

Sync En=FEn—left
Source En =n — sourceCells

Table 2: Expected Results by operator

cost of an empty node, CNULL, is obviously defined to be 0.
The selectivity, n — selectivity, is evaluated beforehand, within
the RBO, by using techniques established in literature [12,
21]. We define dims to be the list of array dimensions, and
length to be the size of a dimension. Penalty represents the
synchronization and communication overheads. We use a
fixed penalty in our experiments, whose value depends upon
the network configuration we use.

Filtering: Multiple filtering operators are supported in our
framework =, ! =, <, >, <=, and >=. Each filter has different
volume or fraction of expected results, which can typically
be estimated based on data statistics. In addition, there are
multiple ways to scan the data and optimize the query, espe-
cially when index structures are available. Dimensional array
values are unique, and in most cases are also sorted — both
properties can be used for estimating selectivities and number
of data scans.

Distributing: In a distributed plan, we assess the cost of data
movement among nodes. The cost of distribution has two
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components — the volume of data sent and the number of
packets needed to be sent.

Joining: Joins can only be run between 2 relations or dimen-
sions at a time. Therefore, when multiple join criteria are
mentioned in the join clause, they are nested one after an-
other, a common scenario for array data since these often
involve multiple dimensions. Consider joining by value or a
non-contextual join, 4. The cost would simply be the multi-
plication of the joined array size, while the expected resultset
size is the same value multiplied by the join selectivity. If
the join is over dimensions, a variable reconstruction might
be needed. In this case, the dimensions are joined first, and
afterwards the resulted dimensions are used to subset the
variable. This process involves communicating the indices of
the values that matched between the nodes executing the join
to the nodes holding the variable data for efficiency. We do
not focus on this step within our cost calculation here. For
brevity, we assume merge sort is used for the join process of
dimensional joins, since in most cases dimensions are already
sorted. Exhaustive discussion of this issue can be found in the
existing literature [18, 38].

4.2 Summarizing — Choosing a Plan

For a given query, a rule based optimizer builds all options
for a non-distributed plan. Since the number of plans built is
small, we distribute (Subsection 3.2 and Subsection 3.3) each
of these plans separately. The cost of each plan is evaluated
by the cost model presented above and the cheapest plan is
selected for execution.

Since all plans possible are evaluated, and only isomorphic
or repeating plans are pruned, the cheapest plan is found. In
the case multiple plans have the same cost, we use the simple
heuristic: choose the least distributed plan among these plans.
Contrary to expectation, we found the least distributed plan,
among equal cost plan, runs somewhat faster due to slight
overheads the cost model does not account for.

5 EVALUATION

This section evaluates both our plan building methods and the
performance of executing the plans. All experiments in which
we execute the queries ran on a cluster where each node has
an 8 core, 2.53, GHz Intel(R) Xeon(R) processor with 12 GB
of memory. All the experiments where we focus on building
plans have been executed on a 4 cores Intel(R) Core(TM) i5,
3.3Ghz, processors, with 2GB of memory. All machines run
Linux kernel version 2.6. The reported results are over 3
different consecutive runs, with no warm-up runs. Standard
deviation is not reported since results were largely consistent.
System: We built two systems for the experimentation - a
query optimizer and an execution engine. The query op-
timizer was written in C++, for efficiency, while the query
execution engine, which executes plans produced by the op-
timizer, was written in Java. Because of the challenges of
performing repeatable experiments in a wide-area settings,
communication latencies were introduced programmatically.

[QINT JT [ J2 [ J3 | J4 [AVGDS]

1|3 |50% | 05% 381MB
2|14 |1.0% | 10% | 0.1% 762MB
3151(01%|05%|01% | 1.0% | 40MB

Table 3: Join selectivities and processed dataset average
sizes by query — N - number of tables involved in the join
(N-1 joins), Jn the selectivity of the n'” join, AVG DS - Aver-
age Dataset Size on each node

Queries: All queries executed by the engine in the evaluation
are value joins, i<, which differ by the amount of joined arrays,
selectivities, and array sizes. For the evaluation we use at most
5 relations (A, B, C, D, E). Query 1 (Q1) joins 3 tables by using
2 joins: AB<IC, Query 2 (Q2) joins 4 tables by using 3 joins:
AxiBCxD, and last Query 3 (Q3) joins 5 tables by using 4
joins: ABICDIE. We believe these three simple queries
represent a wide range of real world queries — by using small
selectivities we can simulate subsettings as well as joinability.
Data Sizes: The experiments were designed in a manner that
each node operates on data sizes of between 8 MB to 800 MB.
These sizes were chosen based on real datasets available on
the ESG portal. The data we used was generated in a pattern
designed to enforce the given selectivities (because indexes
are not currently used, the data origin is insignificant). Unless
mentioned otherwise, we set the penalty of the optimizer to
be 400ms, based on data shown in related work [8, 26, 42].

In Table 3 we present, for each query, the join selectivities
and the average size of array processed. The selectivities are
between 0.1% to 5%, values which are commonly observed in
Data Warehousing queries [37]. Since data is distributed over
multiple nodes, the total data sizes vary for each query and
for each array, therefore, we present the average dataset size.

5.1 Pruning of Query Plans

5000
4000
3000
2000

1000

4

8

32
W 0-1000 1000-2000 ®2000-3000 M 3000-4000 4000-5000

Figure 7: Number of pruned Candidate Join Plans As the
Number of Hosts Increases - Join Between Two Variables

We initially consider a simple join operation between two
arrays, where each array is split across a given number of
hosts. In Figure 7 we show how the numbers of trees spanned
for a join between two variables increases by using the two
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Figure 8: Number of Total Candidate Join Plans As the
Number of Hosts Increases - Join Between Two Variables

No. of Nodes
Relation Partitioned | spanning  options
A B C time (S) spanned
1 1 32 0.19 4,104
1 4 16 0.02 1,816
1 16 16 1.76 72,646
2 4 32 0.91 16,427
4 4 32 1.27 24,644
4 8 8 0.01 1,521
4 16 8 0.30 15,034
8 8 8 0.03 2,614
8§ 8 16 0.37 17,398
16 16 4 0.41 15,762
16 16 8 0.84 29,640

Table 4: Time required to span plans and number of
spanned plans for a three-way join distributed among mul-
tiple nodes, the first columns present for each relation on
how many nodes it is distributed

pruning rules we have introduced. For comparasion, in Fig-
ure 8 we present the number of spanned options without
utilizing these rules — notice the scales are substantially dif-
ferent. For example, when both the arrays being joined are
spread among 32 machines, there are 4,100 options the span-
ning algorithm produces (compared to ~ 1.4 x 10"! without
pruning). In practice, a dataset is likely to be split across a
much smaller number of distributed repositories than 32. The
maximum run time of the algorithm was 0.46 Seconds, while
the average was 0.08 Seconds, showing that query plans can
be enumerated quickly with our method.

Next we consider a join over three arrays, i.e., the query Q2.
In Table 4 we show how long it takes to span plans for the dis-
tribution of the non-distributed plan shown in Figure 4, “Plan
1”. We consider a set of representative distribution options
of the three datasets across different amount of nodes (each
between 1 and 32 nodes). Each row considers a specific parti-
tioning of the three datasets and shows the number of plans
traversed and the time taken. As one see, all execution times
are under 2 seconds. Rules 1 and 2 given in Subsection 3.3
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Figure 9: Execution Time Slowdown (in %) For the Most
Distributed and Median Plans Compared to The Cheapest
Plan. Each query is listed by the query ID, and a detailed
distribution by array appears in Table 5

limit the increase in number of distribution options (for com-
parison, without rule 1 and 2, the first row would have had
to span 2.63 x 103 trees — clearly not a feasible option). In all
cases we experimented with, the query performance improve-
ment was substantial compared to the other, not optimized,
plans. For example, we saved about 20 minutes of execution
time compared to the regular plan, for the setting when the
3 datasets involved are partitioned across 8, 8, and 16 nodes,
respectively, with the final execution time only being 0.37 Sec-
onds. The same plan ran 20 seconds faster compared to the
plan with most parallelism. Similar gains were seen in most
experiments. Overall, we conclude the conditions provided
in Section 3 are sufficient for handling cases where data to be
queried is spread across a modest number of repositories.

5.2 Query Execution Performance
Improvement

In this experiment we measure how effective our query plan
selection method (and the underlying cost model) is. We
execute three different plans for each query, the cheapest and
median cost plans generated by our CBO model, and the
plan with most parallelism. The latter is a commonly used
heuristic in current systems such as Hive [6, 40]). For each of
the queries presented above we first build a plan using our
CBO for different distributed settings. The latency used in
all experiments is 400 ms because of the reasons mentioned
before.

In Figure 9 we report the increase in execution time of the
median and most parallel plan versions, compared to the
cheapest plan our optimizer selected. Along the X-axis, we
list the query and the number of nodes that held the data
for the query (each array is distributed differently for each
query — this information can be seen in Table 5). Along the
Y-axis, we list the slowdown of the median plan and the most
parallel plan compared to the cheapest plan. For example,
Q1-16 cheapest plan ran 83% faster than the most parallel
plan. We note that in certain specific cases (depending on the
selectivities of the joins, among other factors) the cheapest
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5.3 Impact of Network Latency

We executed the query optimizer and the resulting query plans
to emulate four different cases. Here, we set the optimizer
to built plans for a specific value of the network penalty, and
execute each plan using different latency values than the one
that matches the penalty. We chose the following values for
the penalty: 0 (no latency), 40 (Cluster), 400 (WAN), and
4000 (extreme). We built plans optimized for each penalty, and
executed each plan multiple times using different penalties.

Table 5: The distribution of relations for each query — the
specific distribution of each array for the queries presented
in Figure 9

Act. 0 40 400 4000

Exp. None | Cluster WAN | Extreme
0 0.00% | 75.00% | 11.20% 12.42%

40 0.00% 0.00% | 10.37% 0.00%

400 75.00% | 75.00% | 0.00% 0.18%

4000 150.00% | 150.00% | 1.66% 0.00%

QL Q1| Q1 Q2| Q3| Q| @3
16| 20| 32 34| 20| 24| 26
Cheapest [[ 65 [20S | 57S [ 1093S | 31S | 365 | 1465
Distributed || 115 [ 295 | 755 | 1191S | 34S | 39S | 161S
Median [| 29S | 30S | 1835 | 3304S | 365 | 41S | 1528

Table 7: Performance Slowdown Percentage of a Plan Op-
timized for a specific, Expected(Exp), penalty but Executed
with Different Actual(Act) penalty values - Q1 with a set-
ting of 3,5,4

Table 6: Queries Execution Time for the Settings in Table 5

plan is also the one with most parallelism. These cases are not
shown. When arrays are distributed unevenly, the optimal
plans are rarely the most distributed ones. In fact, the number
of processing nodes is often smaller than the number of nodes
that originally hold the array in the cheapest plan, i.e, at least
one of the processing nodes processes data that is copied from
another node.

In Table 6 we show the actual execution time for some
chosen settings from Table 5. As can be seen, in all cases the
cheapest plan execute the fastest. In addition, nearly in all
cases the most parallel plan is faster than the median plan.
In some of the cases, the plans are mostly similar and the
performance difference is small (such is the case for Q3-30 in
Figure 9).

An interesting pattern uncovered is a decrease in the im-
provement for some of the more complex queries (queries
executing more joins and/or using a larger number of nodes).
For example, in the case of Q1-16(4,4,8), the slowdown for
the most distributed query is 83%, while for Q3-20 (4,4,4,4,4)
it is ~10%. This behavior is caused by parallelism that the
more complex plans enable — for example, a 3-way join forces
sequentiality, while for a 4-way join processing of some of the
joins can be performed in parallel for certain plans.

We conclude the CBO approach for performance improve-
ment is profitable. In all cases observed using our cost model,
the fastest query to execute is the one the CBO evaluated to
be the cheapest. In addition, the fastest query execution time
was always faster then the median cost query and the most
distributed plan (wWhen both were different).

Act. 0 40 400 4000

Exp. None Cluster | WAN | Extreme
0 0.00% 18.18% | 31.36% 17.64%

40 11.11% 0.00% | 49.54% 36.96%

400 6122.22% | 1436.36% 0.00% 19.90%

4000 159.26% 0.00% | 26.81% 0.00%

Table 8: Performance Slowdown Percentage of a Plan Op-
timized for a specific, Expected(Exp), penalty but Executed
with Different Actual(Act) penalty values - Q3-24 in Table 5

In Tables 7 and 8 we show the percentage of slowdown in
execution time of the query optimized for a specific value com-
pared to the query optimized for that value. For example, the
value of the first row, second column, in the first table signifies
that the optimized plan for a penalty value of 0 executed 75%
slower than the plan optimized for 40 when the actual penalty
was 40 — the execution time of the cheapest plan optimized for
a penalty of 0 is 7 Seconds, the optimized plan for a penalty of
40 executes in 4 seconds. Similarly, in the second table for the
first row last column, the execution time of a plan optimized
for a penalty of 4000, which was also used for the actual one,
is 2,386 seconds while the plan optimized for a 0 penalty ran
in this setting for 2,807 seconds - a slowdown of 17.64%.

Overall, we can conclude that the penalty has to be selected
carefully to reflect the actual setting — wrong values might
harm performance as significantly as the right values improve
it. It also shows that the best plan can vary significantly de-
pending upon the latency, which implies that detailed cost
modeling is critical.
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6 RELATED WORK

Our work is related to the areas of (scientific) array data query-
ing and distributed querying. We had earlier discussed some
of the efforts in this area in Section 1.1. We now discuss other
relevant efforts here.

Scientific arrays are often stored and distributed using por-
tals, such as ESG [5]. These portals use multiple methods in
their backend to store and retrieve data. The most common
data transportation technologies used is FTP [35], and in fact,
querying operators have been integrated with one implemen-
tation of FTP, the GridFTP [15, 39]. However, these systems
can neither support distributed repositories, nor the Join op-
erators. A more structured approach to querying scientific
data involves array databases, and there is a large body of
work in this area [3, 7, 10, 13, 28-30, 32, 36, 41, 47]. These
systems require that the data be ingested by a central system,
before it could be queried. Thus, they cannot support queries
across multiple repositories. They also cannot directly operate
on low-level scientific data. Finally, the query optimizer in
Hive [40], which provides a high-level query interface to a
MapReduce implementation [14], optimizes distributed query-
ing over data within a cluster. This work primarily focuses on
data within a single cluster, and the heuristics used assume
very low latency — which is obviously not true in the case of
geo-distributed arrays. The same is true for other research
efforts in this area [25].

Optimization of distributed data (outside a cluster) was con-
sidered in the Volcano project [17, 19, 20]. However, this work
did not include a cost-based optimizer that considered dif-
ferent options for distributing the processing and data move-
ment, and uses implicit heuristics as well. WANalytics [44] is
a recent proposal from Microsoft for developing analytics on
geograpically distributed datasets, but their target is not the
join operator, nor scientific data — which makes this work an
ideal continuation of that work.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented and evaluated a framework
for optimized execution of array-based joins in geo-distributed
setting. We developed a query optimizer, which prunes plans
as it generates them. For our target queries, the number of
plans is kept at a manageable level, and subsequently, a cost
model we have developed can be used for selecting the cheap-
est plan. We shown our pruning approach makes the plans
spanning problem practical to solve. We evaluated our system
and shown the cost model cheapest plan executes faster than
more expensive plans. We shown through experimentation
that the penalty parameter introduced in the cost model is a
critical one, and should be adjusted to fit the physical system
setting carefully.

Our work can be extended in multiple directions. One of
the ways to improve query plan generation will be to use
learning algorithms, which can also learn multiple weights
and penalties to fit each environment better. Similarly, creating
an engine which finds the cheapest distributed execution plan
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directly from a query (without first enumerating all join op-
tions using an RBO) is an interesting challenge. Cases where
data is not distributed evenly, and each node has different
data distribution (skewed data), are an interesting research
venue as well.
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